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ABSTRACT

The formulation and solution of inverse problems for the estimation of

parameters which describe damping and other dynamic properties in distributed

models for the vibration of flexible structures is considered. Motivated by a

slewing beam experiment, the identification of a nonlinear velocity dependent

term which models air drag damping in the Euler-Bernoulli equation is investi-

gated. Calerkin techniques are used to generate finite dimensional approxima-

tions. Convergence estimates and numerical results are given. The modeling

of, and related inverse problems for the dynamics of a high pressure hose line

feeding a gas thruster actuator at the tip of a cantilevered beam are then

considered. Approximation and convergence are discussed and numerical results

involving experimental data are presented.
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L hroducilon

The purpose of this note is to illustrate and explain some of the ideas underlying the use of

parameter estimation techinques in investigating damping and other dynamic phenomena in several

classes of distributed models for flexible structures. We do this in the context of two specific

examples drawn from experimental structures. In the first example we present techniques and results

that can be used to study nonlinear aspects of viscous damping (nonlinear air drag) in slewing

maneuvers with flexible beam like structures. We shall describe some fundamental questions,

present a model for which an estimation problem is of importance, and then show how this inverse

problem can be approximated for computational purposes. We do this in a weak or variational setting

and give convergence arguments to provide a theoretical foundation for the numerical schemes we

have used. These convergence results are then followed by presentation of a numerical test example.

Our methods have proved useful in current studies with experimental data, the results for which will

be presented in detail elsewhere.

In a second example, we outline techniques that have been useful in developing accurate models

for the dynamic effects of a flexible gas hose/tip mass/thruster apparatus when it is attached to a

flexible beam to provide an active control system (the so-called "RPL experiment"). Since detailed

mathematical arguments for this project are given elsewhere [BGRW], we shall only outline the

model, the approximation ideas, and present a summary of numerical results obtained when using our

general approach with experimental data.

2. Nonlinear Damping in Slewing Maneuvers

In a series of papers [HJ], [JH], [JHR], Juang and his co-workers describe experiments carried

out to demonstrate the feasibility of actively controlling (stabilizing) vibrations of a beam during

slewing maneuvers. Experiments were conducted with a 1 meter steel beam and with a 3.9 meter

aluminum honeycomb solar panel cantilevered in a vertical plane and rotated in the horizontal plane.

Each was attached to a torquing motor at the hub of rotation or "root" of the beam. In typical

experiments, the beams were slewed 300 to 450 in 1.5 to 4.5 seconds. Strain gauges were located at

the root and at .22 and .5 of the length t of the beam. An angle potentiometer (at the root) measured

angular displacements during the slew. These measurements (strain, yx,,, and angular displacement,

0) were used as feedback to the motor which was then used to suppress the vibrations via an LQR -

theoretical formulation for the feedback control laws.

A series of slewing maneuver experiments were carried out in a laboratory at NASA Langley

Research Center with possible effects due to air damping present. These were then followed by

repetition of the experiments in a vacuum chamber. Experiment and theory were in good agTeement

in the vacuum chamber experiments, but there were significant discrepancies between the theoretical ,ics

model based simulations and the experimental data obtained in the laboratory setting. It is important ,r
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to understand the variation in responses of controlled flexible structures in such differing

environments since many future large spacecraft studies will, by necessity, involve model

extrapolation and design based on laboratory performance only without the benefit of vacuum

chamber comparisons.

It has been suggested that the inaccuracies in the Juang, et. al. simulations most likely resulted

from two types of model error: (1) the absense of a viscous damping term to represent the nonlinear

air damping and (2) dissipation at the fixed end of the cantilevered beams was not included in the

model even though there was some loose "play" in the clamped or "built-in" end of the beams. This

latter mechanism for energy absorption presumably should be modeled by some type of nonlinear

boundary condition in place of the usual no displacement, no slope boundary conditions: y = y, =0.

Figure 2.1

Here we focus on a nonlinear air damping component of the model as suggested by Juang, et.

al., and show that one might effectively compute this using the experimental data in a least squares

setting. We use a formulation proposed by Juang and his co-workers; this model can be derived by

combining first principle energy considerations with laboratory findings on nonlinear drag forces. If

6(t) and y(t,x) denote respectively angular displacement (from some reference angle) at time t and

bending deflection along the beam at time t and position x as depicted in Figure 2.1 above, the model

including actuator dynamics has the form (see [JHR] for a more detailed discussion)

(2.1) 2y d20  dO +y dO + y El y 0- +c 3f(XT+ -) + + + EI
(t dtt " 4

2 J-.',+ +x d 0) x
d20 2 dO ay dO Dy

(2.2) 1 -223 xdx + (x-4  + F xdx r(t)
2- +Jop -- x+ c3f(x~-. - -Of

B dt 0 t 2 t d
t2 dO d20

(2.3) 'T(t) k0ea(t) - k I - k2 dt
d t 2dt2

2 a3y
(2.4) y(t,0) = (t,0) = 0, 2 (t,) =-(t,t) = 0.O2 x3

xoax2

2



Here ea represents the applied armature voltage (this term involves strain feedback in the control

problem), the terms involving c3 and c4 represent viscous damping and the coefficients p and El are
the usual beam material parameters, linear mass density and flexural stiffness, and IB is the moment

J0 px2dx about the axis of rotation. The damping function f is assumed to have the form f(v) = vivi

for v in some bounded region. Of course, one can assume without loss of generality based upon

physical considerations that f becomes bounded as v becomes large.

A number of state space formulations of this model can be investigated in the context of

identification and control problems including the following:

(i) Both 0 and d= -are treated as states,

(ii) The time history for 0 is assumed known, but 0 is treated as a state (if 0(t) is known

from experimental data, it does not follow that 0(t) can be effectively obtained by

differentiation of the data),
(iii) Both 0 and 0 are measured reliably so that each can be treated as a known quantity.

For our discussions here of estimation of the damping coefficients, we assume that (iii) holds so

that one can combine (2.1) and (2.2) to also eliminate 8 as an unknown in the model. We do this
before formulating a least squares problem for estimation of the damping. We also include a
Kelvin-Voigt material damping term in the beam dynamics equation.

We consider then the coupled system (actuator dynamics plus transverse vibrations of the beam)

for0<x< e,t>o

(2.5) Pyt + pxA + c3f(x0 + yt) + c4 (x + ytd + El Day + CDI D Yt = 0,

(2.6) 1B0 +J pxy. dx +c 3 f f(x8+y t) xdx +c J +{xO+yt)xdx = ko e.- k10 -k ,

with appropriate boundary conditions for t > 0

(2.7) y(t,O) = Dy(t,0) = 0,

(2.8) El D2y(t,Z) + CDID 2yt(te) = 0, El D3y(t,t) + CDI D3yt(t,t) = 0,

and appropriate initial conditions. Here and below we shall use the notation D = a/ax. Assuming

that 0(t) and 0(t) are known for 0 < t < T, where T is the duration of the experiment, we may solve

for 0 in equation (2.6), subsitute this into equation (2.5), and obtain a single nonlinear partial

differential equation for the bending deflection y. Upon doing this we obtain

(2.9) Pytt + L(ytt) + C3 F1 (t,x,yt) + c4 F2 (t,x'yt) + g(t,x)

+ C3 f(x + Y) +C4 {X0 + ytd + EI D4y + cDI D4yt = 0

where
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(2.10) fy) - J pS y ds,

PX

(2.11) F (t,x,yt)- - . ( (s + ys ds,

-(2.12) y'2(t,x,y,)= iB +k2 f"0 (As + y,} s ds,

and

(2.13) g(t,x) = - IB" (k0 ea(t) - k, 0(t)).

The boundary conditions (2.7), (2.8) involving no displacement, no slope at x = 0 and no moment,

no shear at x = t, can be equivalently written as

(2.14) y(t,0) = 0, Dy(t,0) = 0, D2y(t,t) = 0, D3y(t,t) = 0.

Using this system, we may formulate an estimation problem for the parameter q= (ql,q2,q3,q4)

= (EI, CDI, c3,c4), given observations ej, i = 1, ..., M, for the root strain D2y(ti,0). The problem

becomes one of choosing from some admissible set of parameters Q c R4 (we treat here only the
constant parameter case - variable coefficients can be readily treated with appropriate modifications of

the arguments - see [BCIJ, [BC2], [BCRJ, [BRI] for details) a parameter q* which minimizes over

Q the least squares criterion

M 2 2
J(q) = XI D2y(ti,0;q) - ei I

i=l

where y(.,. ; q) is the solution of (2.9), (2.14) for a given set of initial conditions y(0,x) = cI(x),

y(0,x) = 'V(x). Least squares problems of this type possess a number of interesting aspects (infinite

dimensional states, theoretical and computational ill-posedness, etc.) which have been discussed by

us and others in a number of previous publications. Here we focus on one particular question: state

approximation techniques and the convergence arguments for approximating parameter estimates

(these convergence arguments are also an important part of theoretical results which guarantee a type

of inverse method stability - i.e. continuous dependence of estimates on the observations - see [BI).

Before turning to these convergence arguments, we rewrite the system in a variational form

(conservative form) with states v = Yt, w = D2y.

We first rewrite (2.9) as

(2.15) Pvt + L(vt) + q3 F(t'xv) + q4 F2(t,xv) + g

+q 3f(xO+v) + q4fx6+v) +qID 2W + q2 D4v = 0

(2.16) wt = Dv

(2.17) v(0) = TF, w(0) = D2,
4



where we seek solutions v e H4 n H2,w H with
H2 ((pe H2(O, t)Ip(o) = Dq(O) = 0)
H? -p E H2(0,t) I 9q(t) Dcp(t) = 0).

Then an equivalent weak or variational form is: Find (v,w) e H2 x H0 satisfying the initial condtions
(2.17) and

(2.18) < pv t + L(vt) + q3Fl(t,.,v) + q4F 2(t,.,v), (p >
+ < g(t,.) + q3f(x0 + v) + q4tx0 + v), (p > + < qw + q2D2v, D29 > = 0 for 9 e H2

(2.19) <w t - D2v, V > = 0 for Nf r HO.

We next make the following observations: for each of the terms involving q4 in equation (2.18),
there is an analogue involving q3, the difference being that the q3 terms are nonlinear, the q4 terms are
linear. Since our primary emphasis here is in presenting convergence arguments for estimation of the
nonlinear damping coefficients and since these arguments readily extend to the case involving the
linear q4 terms, we, for the sake of exposition, shall assume throughout the remainder of our
discussions that q4 = 0. Thus the system of interest to us is

(2.20) < pv t + (vE) + q3 Fl(t,.,v) + q3f(x0(t) + v) + g(t,.), (p >
+ < q1w + q2D2v, D2(p > = 0 for p e H2,

(2.21) < wE - D2v, 4 > = 0 for r= HO,
(2.22) v(0) = TI, w(O) = D24>.

We approximate the system via the usual Galerkin procedures by choosing finite dimensional
subspaces HN c H2 and HN c H0 satisfying certain approximation properties (as N -4 c) to be
specified below. The approximate system for vN e H, wN e HN is given by

(2.23) < Pvtl + A(vtN ) + q3Fl(t,.,vN) +q3f(x0 + vN) + g(t,.), N >
+<qw +q 2D2vN, D2 N) = 0 for ON r HN,

(2.24) < wt1_ D2vN , WN > = 0 for WN E HN,
(2.25) vN(0) = PNv(O), wN(o) - pNw(0)

where PN, pN are the orthogonal projections (in the HO norm) of H onto H1, HN, respectively. We
then may define a sequence of approximating parameter estimation problems consisting of minimizing

over Q the criterion

(2.26) JN(q) = M 2

i=1

where wN is the solution of (2.23) - (2.25) corresponding to q.
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The procedure for arguing convergence of the approximate parameters qN (a minimizer of jN in

(2.26)) is now well-documented in a number of our previous papers (see [B] for a summary). A

crucial step entails the following: If {qN is an arbitrary sequence in Q with qN -4 q in Q, one must

establish the convergence zN 0, UN - 0 where zN(t) = vN -p V, uN(t) = wN - pNwith vN, wN the

solutions of (2.23)-(2.25) corresponding to qN and v,w the solutions of (2.20) - (2.22)

corresponding to q. We outline the arguments to establish this convergence.

Using (2.20) - (2.22) and (2.23) - (2.25) with q = qN, we find for all p E He

< (P N  > = < vN - vt + (I - PN)v, >

= < (I - P ) vt + L(vt) - L(v N ), (P >
+ < q3F1(t,-, v) - q3 F1(t, , vN) + q3f(x0 + v)- q'f(x0 + vN), (p >

+<q 1 w -qwN + q2D2v -qND2vN, D2 qp >

= < (I - PN)v + L(-z4) + L((I - PN)vt), (p > + (q3 - qN) < Fl(t,',v), (p >
+ qN < F1(t,.,v) - FI(t,.,vN), (p > + (q3 - qN) < f(xO + v), (p >

" qN< f(x6 + V) -f(x + vN), p >- < qN(wN -Pw) + qND 2(vN- P v), D2 q >
+ w  P N w + q2D 2v - qND 2 P v, D2 (p >.

Thus we find (suppressing some of the obvious function arguments)

zN + L(zN), P > = < (I- P )vt + A (I- P )vt), 9 >

+ (q3 " qN) < )j(v), 0 > + qN < 7r(v) - Fj( PN v), p>
(2.27) + qN < Y1 ( PN v) - y1(vN), p> + (q3 - q1") f(x0 + v), (p >

+q < f(x0 + v)- f(xO + PN v),p > + q3 < f(x0 + PN v) f(x6 + vN),, >

quN +q D2 zN, D2 P > + < q1w - qN PNw + q2D2v - q 2 p v,

for all (p e HE. Also, for E.t e HN we find

UNN < W~Nw , pN Nw ~ +(IPNwI< ut , Y > =  wt - p~wtV > = < wtN wt + I-pN) Wt' ,

(2.28) < D2vN -D, V > + <I -PN)w,, V >

-= <D 2 zN, i > + < D 2( P - I)v, > + < (I -pN)w,>.

To obtain convergence estimates we make particular choices for (p and 4 in (2.27) and (2.28). Let
(p = z N E HN in (2.27) and 1, = uNe HN in (2.28) and define ON D2 ( P- " I)v, 0 (I- pN)w r

Then from (2.28) we obtain, using the inequality ab 1 a2 + eb2 where e > 0 can be arbitrarily
4c

1chosen,

6



4 d N 22 2 N 12TluNI2<c1D~zN1+ N 2 € 0 1 + I 1 0 N2 + I j

(2.29) 4C

=eID 2zN+-I 3 + N 10 1  +O N 0N 12

Before deriving an analogous estimate from (2.27), we require some hypotheses on the nonlinear

damping function f which will in turn yield estimates on L and F1. Recall that we can expect f(v) to

behave like vIvi = (sgn v) v2 for i in some neighborhood (not necessarily small) of the origin, while it

becomes bounded for v large. Thus, for our theoretical considerations here we make the reasonable

assumptions that f satisfies a Lipschitz condition

(2.30) If(41) - f( 2)l _ K I 1 - 421 for 4,, 42 real

as well as satisfying a boundedness condition

(2.31) 1 f( ) I < M.

From (2.30) we readily obtain the estimates (we shall need these to use in estimates from (2.27)

with (p = zN)

f(x + v) _ f(x + pv), N> (I LN) v(t,x) II N

(2.32) Kt 1-5 1 1_PNv(t) 12 +K I 2 _.

! KI(I-PN)v(t)IIzN(t) < I + N(t)

where we have used I.I to denote either the absolute value or the H0(O, L) norm (the interpretation

being clear from the usage). Similarly, we find

(2.33) < f(xO + PH v)- f(x6 + vN), zN > < K I vN - P v IIZNI = K I zN(t) 12.

Furthemore, using the definition (2.11) of F1, we easily find
N dx px (I _ N: ,S

< F,(t,,v) - F,(t,,P LV), ZN> < O +1 K (I pN)v(tS)IsdslzN(t'x)I

(2.34) < (I- pN)v 2 + zN(t) 2],

where the constant g± depends in an obvious way only on t,K,p, IB , k2. With similar calculations

we find

(2.35) < F (t,-, PH v F- F(t,- vN), zN > < 2g I zlN(t) 12.

Using the definition (2.10) of L we next find

7
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N N ~Px sz (t,s) dslN< L(zN), z > = fII B + k 2 ]t z (tx) dx

(2.36) - P 2 1d N(t x) dxl
I B T 2 2; f t f 0i

-p 1 Id < x, >2
IB+ k2 2 dt

Also

< £((I-P )v),zN> < 2 (IpN) v l zN '

(2.37)

(237 _ [~pN) V 1 i2 +1I z N(t) 2

where the constant ji depends only on p, IB, k, t.

Finally, we can now obtain a desired estimate from (2.27) with p - zN. Using (2.32) - (2.37)

we find

[ 2 21

1 d zN  
1 2 N N I 1 N I

-,. [ N , z2 ] N MI

I(I-PL)Vtl+I + q3 q3 1u~j (2.8) + IqNIg[ I (I-I )V 1+ IzNj2] + IqN I azN 12 + IlM IzN,

(2.38) + 2 %q

+q N I(I P)vI 2IzI + Iq3 K Iz N+l3.. 2 _L) +Z 2] 3 N

N N N N2N > +2N N 2 N
+lq, II u ID z I-<q2  > + 103 1ID z I

where 0N {qlw - qlpNw + q2D2v - qND2pN v).

3 1 2 L

Noting that < x, z N> < I zNI, we fnd that

2 2 3(2.39) -p <x,zN > ~2 > 1 - p Iz = I

31 +3k2z/p

since IB = Jpx2 dx = p t /3. We assume that Q is a compact set and that the admissible parameter

set Q entails the constraints q2 2! v for some positive constant v. We then have

41S
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v ID2zN 12  < qD D2  2zN >.

Using these estimates in (2.38) we obtain

1 d [ 1 N12 _ 12 2 X, <xN N>2 I N )I )v12
2 t IB + k2  2 L Lt

+ [- + g + I + 3kg.t+ 1 + k IzN 12

1[ 2  T N2 k2

+ j[ +M 2 tj Iq -qN 1
2 + k21 uNI2+,ID2z N12

3 4e

2N2 1 10N 12 D2zN 12-vIDz I2 +I +eIzI

4C

or, assuming that I - q I - 0,

1d pzNl 2.. <x N>2] zNi2 .Nt)( ) D2NI2

(2.40) d I + 2 < I + -

+ IuNI2

+ k 2 I4e

wnere hN (t) is bounded and - 0 as N - under the usual assumptions (see [B], [BCR],[BR1]) on
the approximation properties of Hj and HN (i.e. that P4 -- I, pN _+ I in the desired topologies). Fol

example, approximations based upon cubic splines in H2 and linear splines in HO would suffice.

Finally combining (2.29) and (2.40) we obtain

(2.41) Id [p i zN 12 _ 9.2 <xzN2 + uN] 12 2D 2zN 12
2 dt[ IB+k 2  J> I (3--v) ID

+ y1 I z
N 12 + 72 uN 1 2 + G N(t)

where GN is bounded with GN(t) -- 0. Integrating this inequality and using the fact that zN(0) ; 0,

uN(O) = 0, we find

1 I kzN(t)2 2 <XzN> 2 + IuI1+(v -3e) I D2zN(s)2 ds

(2.42)

< j [ I zN(S) I2+2UN(S)I2 ds + f IIGN(t) I+1 ,IP(t) ]dt.

Finally, using (2.39) and choosing C such that v - 3e = 8 > 0 in this last inequality, we obtain

9



(2-43 1 + 3k 2/p IzN(t)12 + I uN(t) ]

(2.43)

+ JID 2 zN (S) 12 ds A(N) + fo'[Y1 I z I(S)1 +YUS)12  ]

where A(N) -- 0. Thus, by the usual Gronwall arguments we have I zN(t) 12 --> 0, I uN(t) 12 --- 0,

and f I D2 zN(s) 12 ds - 0, where zN(t) = vN(t) -Pjv(t) and uN(t) = wN(t) - pNw(t). Under
appropriate convergence properties for PN and PN, we may then use the triangle inequality to obtain

IV (t) I - 0, 1 -w(t) I -v 0, fo I D2vN (s) 12 ds - 0.

We note that the above arguments can be used to establish convergence at each t of the strain in
the H°(0, t) norm. If we use the root strain D2y(t,0) in the least squares criterion, a stronger strain

convergence (pointwise in the spatial coordinate) is needed to complete the theoretical development.
Arguments in the spirit of those given above can be made to give strain convergence in the H1 norm
which, of course, yields root strain convergence. Arguments of this nature have been given for

similar problems elsewhere [BCK], [BR2]; they involve some technical detail and we shall not

pursue the development here. Instead we turn to a brief discussion of some computational aspects of
these schemes.

The approximation and estimation schemes discussed above can be readily used to develop

computational algorithms for estimation of damping coefficients (including those for the nonlinear
viscous damping terms). We have developed and tested numerically some software packages based

on these ideas. We are currently using the packages with experimental data provided by J. Juang;

these results will be reported elsewhere. We close this section with a brief summary of findings for

one of the numerical test examples we have investigated.

A test example was considered for the system (2.9) with p = = El = 1.0 assumed known and

c4 = cD = 0. We sought to estimate the damping coefficient c3 from simulated data for the strain.
That is, we chose a particular function y(t,x) = .5t

2(x4 - 4x 3 + 6x 2 ) as the true solution of the system

equation (2.9) with an appropriate forcing function added to the equation. The true parameter value
c; = 2.0 was used in (2.9) along with choices of 0(t) and ea(t) which were qualitatively similar to the

corresponding experimental time histories available to us. For example, we used

-(t) I - e sin(n 3t+)] with 13=1- , =Arctan 3/

and C, (on chosen so that 0 has a maximum amplitude of 4.5 at t = 1.75. The values k0 = 52.136, k,
10
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- 1672.96 and IB + k2 = 32.95 were used in (2.9) along with 6(t) obtained by differentiating 0.

For the approximating system we used modified cubic splines for both HN and HN; the basis for
HN was the usual cubic B-spline basis modified to satisfy the boundary conditions of H2 while the

usual B-splines modified to satisfy the boundary conditions of H2 were used to generate HN. In each
case the subspaces HN, HN had dimension N + 1. In the fit criterion we used the root strain yx(ti,0)

at 29 equally spaced observations in the time interval 0 < t - 7. For the initial guess cO = 2.5, a
residual of 1789 is obtained. For N = 4, the scheme produced a converged estimate c N= 1.996 with

a corresponding residual of .0088. A number of other test examples were studied with equally

satisfactory findings.

3. Hose Effects on the Dynamics of the RPL Structure

The RPL structure is an experimental apparatus which was designed and constructed at the

Charles Stark Draper Laboratory in Cambridge, Massachusetts with funding supplied by the United
States Air Force Rocket Propulsion Laboratory (RPL). Its primary function is to serve as a test bed
for the purpose of investigating control algorithms and instrumentation (sensors, actuators,
processors, etc.) for the large angle slewing of spacecraft with flexible appendages. It was designed

to specifically incorporate those features which make control design for large flexible spacecraft an

especially difficult and challenging problem. In particular, this includes light damping, high
flexibility, a large number of, and closely spaced natural modes of vibration, difficult to model and

coupled structural and actuator dynamics and dissipation mechanisms, etc.
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The structure itself consists of four aluminum beams, each of length £ = 4 feet, width b=6

inches and thickness h = .125 inches, cantilevered in a symmetrical fashion to a central hub which is

mounted on an air bearing table. The air bearing table allows for the near frictionless rotation of the

entire structure about the vertical axis. Control actuation is achieved via nitrogen cold gas thrusters

mounted at the tips of two opposing appendages. The other two beams are passive with masses at

their tips serving only to maintain the over all symmetry of the structure. Nitrogen gas is supplied to

the thrusters from storage tanks mounted to the central hub through stainless steel, wire mesh
wrapped, flexible, high pressure hoses. Electro-mechanical valves control the expulsion of the gas

from the thruster nozzles. Each appendage is instrumented with a linear accelerometer at the tip. Data
from the sensors is recorded and control input signals are generated using a MINC 11/23

microcomputer.

Effective control design depends heavily upon the availability of a high fidelity model for the
plar.. In the case of the RPL structure, it is immediately clear that a model involving partial

differential equations would be of some use. For the transverse vibration of the passive beams, a

distributed parameter model based upon the Euler-Bernoulli equation together with appropriate

boundary conditions describing the coupled motion of the tip mass and the rigid body rotation of the

central hub would be adequate. For the active appendages (i.e., those with the tip thrusters) on the

other hand, a more sophisticated model which also captures the coupled dynamic effects (i.e.

additional mass, stiffness and dissipation, torsional motion, etc.) due to the motion of the flexible

thruster hoses is needed.

Since the transverse vibration of each of the individual appendages is decoupled, for our

investigation here, we consider the problem of modeling the hose effects on the transverse vibration

of a single cantilevered (i.e. clamped - free) beam (see Figure 3.2).

Figure 3.2

We describe a model which was suggested by S. Gates of the Control and Flight Dynamics division

of the Draper Laboratory wherein the hose is treated as a damped linear harmonic oscillator that is

rigidly attached to the thruster assembly at the free end of the beam. More precisely, the hose is

modeled as a proof mass which reacts against the tip or thruster mass via an elastic spring and a

linear, viscous damper (see Figure 3.3)

12



I

kil

T Y W

Figure 3.3

Letting u(t,x) denote the vertical displacement of the beam at time t and position x, 0 < x <

au
and assuming only small deformations ( i.e. lu(t,x) I < < t, I L- (t,x) I << 1)

we use the Euler-Bernoulli equation together with Kelvin-Voigt viscoelastic material damping to

describe its transverse vibration. That is

2 4 4
(3.1) P-2L(tIx) + cDI L(t,x) + EI L (t,x) = 0 O<x< t, t>O

at 2  D 3x4 at ax 4

where p is the linear mass density, cD and E are respectively the material coefficient of viscosity and

modulus of elasticity and I = bh 3/12 is the second moment or moment of inertia of the uniform,
rectangular cross section of the beam.

At the free end of the beam, corresponding to x = , the motion of the tip mass mr and the
hose mass m H are given by

mT a-2- (t, ) - cDI a u(t, )-El a-- (t, )T2 D x3 at 3

(3.2) t ax ax

=c( (t) - tu(t, t)) + kH(Y(t) - u(tt)) + f(t), t > 0

and

2

(3.3) mf d y dt)+ au t) +kU' 0't>
dt~ >0 T

respectively where y(t) is the vertical displacement of the hose mass at time t measured from the

equilibrium position, f(t) is the thruster force at time t and c. and kH are respectively the hose

damping and stiffness coefficients. Assuming that the rotational inertia due to the hose - thruster

13



assembly is negligible, we also have the zero moment condition

2 u 2u

(3.4) CDI a 2D(t,t) + El - (t, ) = 0, t > 0D x 2  at ax 2

at the free end. At the clamped end, we have the usual geometric boundary conditions of zero

displacement,

(3.5) u(t,O) = 0, t > 0

and zero slope,

(3.6) Du (t,0) = 0, t > 0.

Assuming that the system is initially at rest, we have the temporal boundary conditions or initial

conditions given by

au
(3.7) u(0,x) = 0, --(Ox) = 0, 0 < x <

and

(3.8) y(O) = 0, -t(0) = 0.

Our primary concern here is the inverse problem which is naturally associated with the

mathematical model given by equations (3.1) - (3.8) above. The physical dimensions and mass

properties of the beam and thruster assembly and the elastic properties of the material from which the

beam is made are known. Also, the thruster output can be experimentally calibrated. Consequently

the parameters t, p, E, mr and b and h (and therefore I) are known. The input function f is given as

well. However, the coefficient of viscosity cD and the hose parameters mH, cH and kH must be

determined via an identification procedure. Recalling that the structure is instrumented with a linear

accelerometer at the tip of the beam, we formulate the following inverse or parameter identification

problem.

Given a known input f(t) and corresponding measured output z(t) for t c t0 ,t 1], determine the

parameters q = (cD, mH, CH, kH)T in a closed and bounded subset Q of R4, which minimize the least

squares performance index

14



ti 2 u 
2(3.9) J(q) - J I - (t,, q) - z(t) I dt

where u(-, -; q) denotes the solution to the initial boundary value problem (3.1) - (3.8)

corresponding to the choice of parameters q = (cD,mH, CH, kH) E Q.

Implicit in the statement of the problem above is the well posedness of the initial boundary value

problem, i.e. the existence, uniqueness and regularity of solutions to the system (3.1) - (3.8). The

infinite dimensionality of the distributed state constraints necessitates the development and use of

some form of finite dimensional approximation. Both of these issues are most efficiently addressed

via an abstract, functional analytic formulation of the system (3.1) - (3.8).

Define the Hilbert space H = R2 x L2(0,t) endowed with the usual inner product and let V =

(( ,rj,p) E H: (p E H2(0,j), cp(o) = Dp(O) = 0, '1 = q(t)). Define the coercive bilinear forms c
and k from V x V into R by c(-,) = CH( -9( ))( v( )) + CDI <D 2 9p, D2N> and k(P, ) =

kH( - qp(t))(X - V(t)) + El <D 2q, D24f> for = (C, q (),p ) E V and ,=(X, V(t) V) E V,

the operator M E L(H,H) by M(C,j,(p) = (mHC, mTr, pcp) and set F(t) = (O,f(t), 0 ) r H. Then the

initial boundary value problem (3.1) - (3.8) can be rewritten in weak form as9,

2;, (3.10) < Mu 1t(t),P >H + c(Uti(t), ) + k(u(t), ()=<F(t),$>n, t > 0,11E V

(3.11) U(O) = 0, ut(O) = 0,

for U(t) = (y(t), u(t,t), u(t, .)) e V.

Depending upon the degree of smoothness imposed upon the input f as a function of t (i.e. L2,

Holder continuity, H1, etc.), standard results from the theory of abstract parabolic equations (see [F],

[SI) can be used to demonstrate the existence and uniqueness of solutions to (3.10) - (3.11) with

varying degrees of regularity.

We define finite dimensional approximations to the system (3.10), (3.11) using a cubic spline
based Galerkin scheme. For each N = 1,2, ... , let { 3N) N+1 denote the usual cubic polynomial B-

j j=1

splines defined on the interval I0,t I with respect to the uniform mesh (0, t/N, 2tfN ... / and

which have been modified to satisfy I3 0) = DO3 (0) = 0, j= 1,2....N+ I. Set ON = (1,0,0), I0J'=
0 )N N+I

(0, Oj (t), Pj) , j 1,2,..., N + I and V = span . )_-- • The Galerkin equations corresponding to

(3.10), (3.11) for UiN(t) E VN are given by

(3.12) < Mu IL(t), 3>H + c (Iti (t), ON) + k(u N(t), ON)

< F(t), >U' t > 0, j 0,1,2,..., N+I

(3.13) U(O) = 0 (0) = 0.

'5



For q = (CD, mH, CH, kH) E Q, let u^N(t; q) =(yN(t;q) uN(t, t ;q), uN(t,.; q)) denote the solution to the
finite dimensional system (3.12), (3.13) corresponding to the choice of parameters q e Q and let

2
u (t;q) be defined analogously with respect to the system (3.10), (3.11). If- (t, ;q) in the least

at2

2UN
squares performance index J given by (3.9) is replaced with - (t, t; q) and the resulting finite

at
2

dimensionally constrained estimation problem (henceforth referred to as the Nth approximating
estimation problem) is solved, an approximation to the optimal parameters q is obtained. Indeed, it
can be argued (using estimates in the spirit of those given in the previous section; see [BGRW] for
the details) that if f is smooth and if (qN)= 1 is Q w qN q0

,N N 2UN uN a2 uthen utt(. , q )--tt(. ; qO) in L2 (0,T; H) (or equivalently, that - ( ) - (., a.t qO).at 2  at2

in L2(0,T)) as N -- oo. This in turn can then be used to show that if 4N is a solution (which can be
shown to exist) to the Nth approximating estimation problem, the sequence { N } N=I c Q admits a

convergent subsequence {qNJ )-I with q- -- q as j -- o- and q is a solution to the original infinite

dimensionally constrained identification problem.
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We tested our model and scheme using data produced by the following experiment carried out

for us on the RPL structure by Dr. Michel A. Floyd, formerly of the Draper Laboratory. With the

central hub held stationary and the structure initially at rest, a thruster line was pressurized to 300 psi
and the corresponding jet fired for 50 milliseconds. Linear acceleration at the tip of the corresponding
appendage was recorded over the period 0 to 5 seconds with a sampling interval of 5 milliseconds
yielding 1000 measurements. With the accelerometer calibrated to 5 volts/g (g = 32 ft/sec 2), the

observations produced are plotted in Figure 3.4 above.
From an FFT of the data we found the first three frequencies to be approximately .75 Hz, 7.5Hz

and 14Hz. A visual inspection of the data immediately reveals the modes at .75Hz and 14Hz. The
mode at 14Hz is a torsional mode, or, more pecisely, a twisting of the beam about its longitudinal
axis. The excitation of this mode results from a combination of factors including the presence of the

hose and the fact that it is connected to the thruster assembly at the top rather than the center of the

beam and the opening and closing of the thruster valves. Since the torsional vibration is at a much
higher frequency than are either of the first two transverse vibrational modes, and since it is relatively
rapidly damped, in our study here we simply treated it as noise and left it unmodeled. A more

detailed discussion of the torsional effects and its coupling into the accelerometer measurements of the

transverse motion of the beam can be found in [BGRWI.
The beam is made of a grade of aluminum having linear mass density p = .027 slug/ft and

modulus of elasticity E = 15.84 x 108 lb/(ft)2. We have t = 4ft and I = bh3/12 = 4.71 x 10-8 (ft)4.
The mass of the thruster assembly mT was determined to be .149 slug. A hose pressure of 300 psi

was determined to be equivalent to a force of .2971b. We have therefore

0.2971b 0 !5 t:5 .05

0.0 .05 < t 5 5.0.

The index of approximation N was taken to be 4 throughout. A detailed study of the convergence
properties of our scheme using test examples and simulation data was carried out with the results

having been reported in [BGRW].
We neglected the hose effects and internal damping (i.e., we took cD = mH = cH = kH = 0) and

used the standard Euler-Bernoulli model for a cantilevered beam with tip mass to generate values for
the linear acceleration at the tip. The resulting acceleration profile along with the experimentally

observed data is plotted in Figure 3.5. If one is willing to accept the Euler-Bernoulli theory as a
reasonable description for the transverse vibration of a long, slender, flexible beam, then it is clear

from the figure that the hose effects are indeed significant and should be modeled. The residual was

found to be 3.03.
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Figure 3.5

In applying our scheme we used the data over the interval 3.0 to 5.0 seconds (where the
contribution from the torsional mode has been significantly damped) sampled at the rate of 10
observations per second. By matching the first two modal frequencies of the data with the first two

% modal frequencies of the model we obtained crude estimates for mH and kH that could be used as
start-up values for an iterative optimization procedure. Then, using our spline-based scheme along

with an iterative Levenberg-Marquardt nonlinear least-squares routine to solve the approximating

estimation problems to search over mH and kH, optimal values for the hose mass and hose stiffness
were obtained. Taking these values along with cH = 0 as start-up values, we used our scheme again

to obtain optimal values for mH., cH and kH. Repeating this general procedure, we obtained the
optimal values for the parameters CD, mH, cH and kH given in Table 3.1. The corresponding tip
acceleration profile is plotted in Figure 3.6. The residual was computed to be .70 - a clear

improvement.

CD (lb sec/ft2 ) mH (slug) cH (lb.sec/ft) ku(lblft)

127.40 .0801 .0078 .413

Table 3.1

18



x Data

0

0 Fit
0

X N

;- xX

0.00 00 2.00 3.00 4.00
Time (seconds)

Figure 3.6

In summary, our results demonstrate the feasibility and effectiveness of using distributed
parameter systems to model structural dynamics. Our finite dimensional approximation methods
provide a viable means for estimating unknown parameters appearing in the models which can not be

explicitly measured experimentally. Finally, our general approach appears to compare favorably (see
[BGRWI) with other identification procedures for the estimation of parameters in models for

structural dynamics which are commonly used in engineering practice.
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